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ABSTRACT

Extreme precipitation events on the western coast of North America
are often traced to an unusual weather phenomenon known as at-
mospheric rivers. Although these storms may provide a significant
fraction of the total water to the highly managed western US hy-
drological system, the resulting intense weather poses severe risks
to the human and natural infrastructure through severe flooding and
wind damage. To aid the understanding of this phenomenon, we
have developed an efficient detection algorithm suitable for analyz-
ing large amounts of data. In addition to detecting actual events in
the recent observed historical record, this detection algorithm can
be applied to global climate model output providing a new model
validation methodology. Comparing the statistical behavior of sim-
ulated atmospheric river events in models to observations will en-
hance confidence in projections of future extreme storms.

Our detection algorithm is based on a thresholding condition on
the total column integrated water vapor established by Ralph et al.
(2004) followed by a connected component labeling procedure to
group the mesh points into connected regions in space. We develop
an efficient parallel implementation of the algorithm and demon-
strate good weak and strong scaling. We process a 30-year simula-
tion output on 10,000 cores in under 3 seconds.

Index Terms: J.2 [Computer Applications]: Physical Sciences
and Engineering— [I.5.4]: Pattern Recognition—Applications;
I.6.6 [Simulation and Modeling]: Simulation Output Analysis—

1 INTRODUCTION

Extreme precipitation events on the western coast of North Amer-
ica are often traced to an unusual weather phenomenon known as
atmospheric rivers (ARs). These events refer to filamentary struc-
tures in atmosphere that transport significant amounts of water over
a long distance in narrow bands [2, 15]. In one of the earliest studies
on this phenomenon, it was determined that such a structure could
carry more water than the great river Amazon [12]. Figure 1 shows
an example of an atmospheric river that deposited record amounts
of rainfall on California over the course of several days in Decem-
ber 2010. For regions such as the west coast of the United States,
atmospheric rivers bring more than half of the annual total precip-
itation and can occur in as few as five days [2]. Their intensity
creates a possibility of flooding and wind damage, yet at the same
time they provide a significant amount of the fresh water needed for
the western states’ water management systems. Although current
research is focussed on AR events making landfall on the western
coast of North America, the phenomena is not limited to the north-
eastern Pacific and can occur in other ocean basins.

This study of atmospheric rivers is part of on-going efforts to
understand the mechanisms responsible for severe but infrequent
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Figure 1: The observed three day average total precipitable water
(mm) on December 14, 2010 from an analysis of SSM/I satellite data
(www.rss.com). The long filamentary structure reaching west coast
of US is known as an atmospheric river.

weather events. In some winter-time events, such as atmospheric
rivers, several planetary-scale conditions must be in phase for such
large entrainments of tropical moisture [15]. To reach more general
conclusions, many atmospheric events must be analyzed individu-
ally and as a whole set. To analyze these events, they must first be
identified.

In this work, we develop an efficient algorithm for identifying
atmospheric rivers from both observational data from satellite mea-
surements and climate model output data. Part of our motivations
are to understand the statistical behavior of AR events to under-
stand how they might change in a warmer climate. Hence, a key
objective is to develop an efficient algorithm to identify AR from
large volumes of data, allowing us to determine the frequency and
intensity of AR events. Additional information about the structure
of AR events, notably landfall location, intensity and duration are
also obtainable by our method and will prove useful in projection
of future climate change.

Observed precipitation and offshore wind speed [11] have been
used to identify atmospheric rivers in the western Pacific basin by
constructing a scatterplot of high quality hourly precipitation and
wind data collected at key coastal weather stations [20]. This ad
hoc method is based on setting thresholds of precipitation and wind
speed in the upslope direction and has proved useful in identifying
recent atmospheric river events. However, this detection method
is localized by definition and requires ancillary data, such as total
precipitable water from satellite measurements, to characterize the
atmospheric river event. Furthermore, as atmospheric rivers can
happen in any ocean basin, the scheme would fail if the event does
not make landfall where quality observations are available. This
likely precludes analyses in a global context. Application to cli-
mate simulations may also pose problems due to model bias in pre-
cipitation and wind fields. For example, the thresholds appropriate
to observations may not work well if model extreme precipitation
and winds exhibit systematic errors. In this paper, we present an
alternative detection scheme based on examining basin-wide data



characteristic of the atmospheric river phenomenon. Our method-
ology allows for detection and characterization of such events in
both satellite measurements and climate model output. As such, it
will prove a critical tool in the projection of future changes in this
class of extreme storm.

The key contributions of this work are as follows:

• We designed an efficient algorithm for identifying AR using
total column integrated precipitable water vapor data from ei-
ther observations or simulations. This algorithm is designed
to work with water vapor data alone, without ancillary data,
which makes it possible to apply the same detection algorithm
anywhere on the globe.

• Our algorithm is highly parallelizable; we demonstrate effi-
cient parallel scaling on a large 1TB dataset. We believe that
our techniques can be applied to the next generate climate
models which will produce petabytes of data.

• We verify the results from our algorithm against published
studies by using a set of satellite data that have not been pre-
viously used for this purpose. The data used in this study is
from Advanced Microwave Scanning Radiometer (AMSR-E)
satellite described in Section 4. We obtain classification accu-
racy of 92%.

2 RELATED WORK

In this section, we briefly review related work on atmospheric
rivers, climate modeling, and feature detection algorithms.

2.1 Atmospheric Rivers
An atmospheric river is a long and narrow structure in atmosphere
that transports tropical moisture to the far-flung regions outside of
the tropical zone[2, 15]. Zhu and Newell were the first to name this
phenomenon ”atmospheric river” noting that they typically trans-
port more water than the Amazon[23]. As they can be highly local-
ized, river is an apt description of such a narrow stream of moisture
moving at high speeds across thousands of kilometers. AR such
as the one shown in Figure 1 passes near the Hawaiian Islands are
often called the Pineapple Express by television weather reporters.
AR events occur in oceans around the globe, including the Atlantic
basin affecting the British isles. 1.

The key characteristics recognized in earlier studies of ARs is
the moisture flux [24]. However, that quantity turns out to be a hard
to directly observe. In 2004, Ralph et al. [16] established a much
simpler set of conditions for identify atmospheric rivers in satel-
lite observations. Their detection works with two-dimensional data
over a uniform mesh on the global and is primarily based on the
Integrated Water Vapor (IWV) content, which measures the total
water content (measured in volume) in the volume of atmosphere
above a unit of earth surface. This quantity is measured in mil-
limeters (mm) or centimeters (cm). More specifically, they identify
atmospheric rivers as atmospheric features with IWV > 2cm, more
than 2000 km in length and less than 1000 km in width. Based
on this definition, Ralph and colleagues have identified hundreds
of atmospheric river events in the data produced by Special Sensor
Microwave Imager (SSM/I) satellite observations [2, 10].

In this work, we will use a different set of satellite data as
well as output data from a state of the art high-resolution climate
model. The observational data we use is from a satellite called Ad-
vanced Microwave Scanning Radiometer (AMSR-R). This device
measures IWV allowing us to use the same conditions as proposed
by Ralph et al. [16].

1http://cimss.ssec.wisc.edu/goes/blog/archives/
3838.

Objective identification of atmospheric river events is a challeng-
ing task. Identifying observed events in the historical record for
case study analyses can exploit associated information such as on-
shore extreme precipitation and wind direction to identify candidate
events. Large scale structural information can then be gained by
analyses of satellite measurements [15]. However, analyses of the
statistical behavior of atmospheric rivers are also necessary to un-
derstand the more general relationship to large-scale climatic vari-
ations. The ability of climate models to simulate atmospheric river
statistics is key to projecting if these phenomena change as the cli-
mate warms. Hence, an atmospheric river identification scheme
that neither misidentifies nor misses candidate events is critical to
the statistical analysis of climate models, and their comparison to
the observed recent past.

2.2 Climate Models
Using computers to simulate and predict the weather is one of the
most successful applications of computer technology in the past few
decades. With this technology, we are able forecast severe weather
and effectively evacuate the affected area. The same technology
has also been used to assess how the climate changes will impact
human society in the future [14].

The Community Earth System Model (CESM) 2 is a fully-
coupled, global climate model developed by the National Center
for Atmospheric Research (NCAR) in Boulder, Colorado 3. It is
one of the widely used global climate modeling tool used for cli-
mate research. In our study of atmospheric rivers, we will be using
the output from a component of CESM called fvCAM, the finite-
volume version of the Community Atmosphere Model.

Data produced by climate models and various satellites orbit-
ing the earth is massive. For example, 15-year modeling data from
fvCAM with output every 6 simulated hours, and a mesh point
resolution of 0.5◦ latitude by 0.625◦ longitude produces roughly
500GB of data [19]. Ensembles of simulations can easily produce
petabytes of data. The Advanced Microwave Scanning Radiometer
(AMSR-E) satellite produces 150GB data for a decade of obser-
vations. There are many satellites scanning the earth for different
observations. Together they produce many terabytes of data.

In this work, a key goal is to develop an algorithm for identifying
atmospheric rivers from such datasets. To work with petabytes of
data, our algorithm has to be efficient and able to take advantage of
massively parallel computers.

2.3 Feature Detection on Mesh Data
Climate Model and satellite output are typically generated (or re-
grided) on a regular mesh over the globe. Following the methodol-
ogy used by Ralph et al., we perform our detection on 2-D data on
the latitude-longitude mesh [16]. An atmospheric river is an event
that can last for a few days. Our detection algorithm processes one
day at a time. For each day’s data, the AR appears as a connected
regions in space where the integrated water vapor content is high.
This type of feature in space is commonly known as region of inter-
est. Identifying such regions of interest is a basic operation in many
computer vision and visual analysis tasks [13, 6].

Our detection algorithm proceeds in three steps. The first step
performs a thresholding operation based on IWV value; mesh
points with high IWV values are marked for further processing. The
second step connects the marked mesh points into regions. This
step employs a connected component labeling algorithm. The con-
nected regions are passed to the last step for verification of sizes.
The first and last steps are relatively straightforward and can be
found in many textbooks [6, 13]. In this section, we briefly review
the algorithms used for connected component labeling [4, 21].

2http://www.cesm.ucar.edu/.
3http://ncar.ucar.edu/.



The IWV data processed by our feature identification procedure
is stored as a 2-dimensional array. The output from the thresholding
step can be treated as a binary image, where the foreground pixels
are mesh points with large IWV values and the background pixels
are mesh points with small IWV values. This allows us to use the
connected component labeling algorithms developed from image
processing. There are a variety of algorithms for this task. For
example, there are a number of different parallel approaches [7, 18],
some methods using specialized hardware [5, 9], and some using
GPU-type accelerators [8]. In our application, the image sizes are
relatively modest. For example, at 0.5◦ resolution, the whole global
is divided into a mesh of 720×360, which has just about a quarter
of a million mesh points (or pixels in the binary image). Due to this
modest size, we choose to perform connected component labeling
using only a single CPU core.

The sequential labeling algorithms can be divided into three
categories based on how many times the binary image is ac-
cessed [17, 21]. The simplest algorithms requires multiple passes
through the binary image and are known as multi-pass algorithms.
The algorithm by Suzuki et al. [17] is an efficient example in this
category. The second category of labeling method is known as two-
pass algorithms because they require two passes through the bi-
nary image, once to gather the connectivity information among the
foreground pixels and once to assign the final labels to each pixel.
The third category of labeling methods requires only a single pass
through the data [1]. On modern CPUs, memory accesses typically
dominate the cost of the connected component labeling algorithms.
In this case, the algorithm that scan through the data array the least
number of times should be the fastest. This argument favors the
one-pass algorithms. However, the one-pass algorithms have to
perform random accesses, which are typically much slower than
sequential memory accesses. For this reason, an efficient two-pass
algorithm can actually outperform the best of the one-pass algo-
rithms [21]. For this reason, we choose to use a two-pass algorithm
in this work.

The two-pass algorithms need some data structures to record the
equivalence information among the provisional labels assigned to
the foreground pixels during the first pass. They avoid scanning the
image multiple times by manipulating the label equivalence infor-
mation to arrive at a final assignment for each provisional label. The
most efficient data structure for keeping track of the label equiva-
lence information is called union-find [3], and the most efficient
implementation of the union-find data structure is an implicit data
structure that uses a single array [21]. An efficient union-find im-
plementation is critical to the overall effectiveness of the two-pass
algorithm.

It is possible to represent the binary image differently to achieve
better performance for the connected component labeling step [22].
The key idea is to make the representation of the foreground pix-
els more compact. However, representing the foreground pixels
more compactly will make it more difficult to compute lengths and
widths of the connected regions, which make the third step more
expensive. In this work, we chose to keep the binary image in an
two-dimensional array.

3 OUR APPROACH

Our algorithm processes 2-D meshes defined over the globe. These
meshes are relatively small, for example, the satellite observation
data is defined on a 1/4◦ mesh with just over 1M mesh points, and
the climate model output uses a 1/2◦ mesh. Even with fine meshes
at 1/10◦ mesh, the data associated with a single variable, i.e. inte-
grated water vapor (IWV), can easily fit into main memory. While
we need to process many timesteps in the complete dataset, this can
be done in parallel.

A schematic illustration of the parallel algorithm for AR detec-
tion is shown in Figure 2. The algorithm can be divided into an

Figure 2: Schematics of AR detection tool implemented with MPI

Figure 3: An array representation of the rooted trees.

I/O phase and and a Compute phase (shown as C in Figure 2).
The I/O phase includes reading the input filenames and vapor data.
The computation phase consists of thresholding, connected com-
ponent labeling, and verification steps. Each process generates an
output indicating the presence or absence of an AR. Our design al-
lows each process to run independently without any need for inter-
process synchronization or communication.

3.1 I/O Phase
Our current implementation requires a list of data file names to pro-
cess. This list is currently stored in a single, shared file. Currently,
all processes read the file; it is possible to split this file in the future
to reduce metadata overhead, but for now we have decided to use
this simple approach. Once each process determines what file to
process, it then proceeds with reading the IWV data.

The function that performs the reading of IWV data takes a num-
ber of optional input parameters, such as granularity of climate data,
type of data format (such as gunzip compressed format, netCDF,
etc.), the number of timesteps present in one day’s data and regions
where AR should be detected. This flexibility allows us to detect
AR in any region of the world at different granularity.

3.2 Compute Phase
3.2.1 Thresholding
In the compute phase, the first step is a set of thresholding opera-
tions on IWV values. Ralph et al. [16] specify IWV values greater
than 20mm for detecting atmospheric rivers. We use this threshold
value for all results reported in the paper. However, our detection
tool can take on a pair of thresholds that define the a lower bound
and a upper bound for the IWV values. This additional flexibility
can be useful for with systematic biases. The output of the thresh-
olding step is a collection of mesh points that satisfy the threshold
criteria. These “foreground” pixels are then processed by the Con-
nected Component Labeling (CCL) step.

3.2.2 Connected Component Labeling
Our connected component labeling implementation is based on a
two-pass algorithm [21]. The algorithm can be broken down into



three steps. The first step assigns a provisional label to each mesh
point visited. These provisional labels may turn out to be assigned
to connected mesh points. We say that these labels are equivalent.
This label equivalence information is recorded in a data structure
called union-find. The second step works with the union-find data
structure to determine the final label for each provision label. The
third step replaces the provisional labels with their final values. This
third step is a series of straightforward assignments.

The first step examines each mesh point in turn. A mesh point
failing the thresholding conditions will receive a special label, say
0, to indicate that it is not of interest. A mesh point satisfying the
thresholding conditions will receive a provisional label. This as-
signment proceeds as follows. If there is no neighbor with a pro-
visional label already, then this mesh point receives a new label. If
any of its neighbors have already received a label, any of their la-
bels can be assigned to the current mesh point. Because the neigh-
bors are connected to this mesh point and to each other, their labels
should be the same. We say that these labels are equivalent, and
choose the smallest labels as the “representative” of the groups of
equivalent labels.

The union-find data structure stores the label equivalence in-
formation. This data structure supports two key operations called
union and find. Given any provisional label, the find operation lo-
cates its “representative.” Given any two provisional labels, the
union operation is to record that they are equivalent to each other.
This operation can be implemented as two find operations followed
by an operation to set one “representative” pointing to the other. We
choose to have the representative with larger numerical value point-
ing to the representative with smaller value. The union-find data
structure can be interpreted as representing a forest of union-find
trees, where the “representative” is the root of each tree. Pictori-
ally, this is illustrated in Figure 3. By choosing to use non-negative
integers as labels, it is possible to use the labels as the array in-
dex and implement the union-find data structure in a single array as
illustrated in Figure 3.

Using an array to implicitly represent the union-find trees has
the advantage that the memory for the union-find data structure is
consecutive in memory. Furthermore, the find operations always
traverse to the left in Figure 3. This predictable pattern reduces the
average cost of the memory accesses, which improves the overall
effectiveness of the labeling algorithm.

3.2.3 Verification
After the connected component labeling step, each connected group
of mesh points receives a unique label for identification. We then
compute the length and width of each group, and impose the rele-
vant constraints (i.e. Length > 2000km and Width < 1000km [16])
in the verification step.

Our implementation can also impose additional spatial con-
straints. For example, to declare an atmospheric river as a “pineap-
ple express”, we can test for the AR having passed through the is-
lands of Hawaii and the west coast of US.

4 EXPERIMENTAL METHODOLOGY

Thus far, we have described the algorithm for detecting atmospheric
rivers. We are interested in evaluating the performance of our algo-
rithm along the following metrics:

• How well does our algorithm perform? What is its accuracy?

• How well does the implementation scale with large data
(weak scaling)?

• How well does the implementation scale with number of pro-
cesses (strong scaling)?

We now describe our experimental methodology for addressing
these questions.

4.1 Accuracy of our approach

We have taken a number of approaches to validate the accuracy of
our detection algorithm. First, we made sure that our algorithm can
accept the parameters established by Ralph et al. [16]. Theoreti-
cally, this should ensure we have the same detection algorithm as
used by Ralph and colleagues.

To start off, we verified that we were able to detect recent
“pineapple express” events in the recent news such the one around
December 14, 2010 shown in Figure 1. This approach is useful but
limited in that we only have established reports for a handful of
such events. We considered mining weather reports for more oc-
currences of this pattern; however, we are not able to find a reliable
mining tool to process such information.

We also used a subjective approach, wherein we had a domain
science expert examine a number of “hard” cases and report if the
algorithm was computing the right result. While this exercise was
extremely insightful in terms of understanding the phenomena, we
could not be absolutely certain that we had captured all occurrences.
Needless to say, it was impossible to have the domain expert sift
through all of the observational data due to time constraints.

We briefly considered the option of using a system like the Ama-
zon Mechanical Turk4 for obtaining human annotated data, but
there is a certain degree of domain knowledge required to success-
fully complete this task.

Finally, we settled on comparing our results to the published AR
events in the west coast US by a number of other researchers [2, 10].
These papers contain an exhaustive list of atmospheric rivers reach-
ing the US west coast from the year 1998-2008. We treat the results
reported in Dettinger et al. from June 2002 and 2008 as ground
truth. We note that our results are obtained from a different satellite,
Advanced Microwave Scanning Radiometer (AMSR-E) satellite 5.

4.2 Weak Scaling

The field of climate modeling is undergoing active research: we
expect larger and larger simulation datasets to be produced in the
coming years. While the dataset sizes are increasing, we also have
access to large supercomputing systems to process the data. Hence,
it is important that data analysis programs are able to scale up as
more computing resources are provide for large data sets. To mea-
sure this type of scalability, we keep the work given to each pro-
cess constant, but increasing the number of processes across 1000,
2000, 4000, 8000, and 10000 MPI processes, while proportionally
increasing the problem sizes from 50GB to 1TB.

In our tests, we will report both the time to read the input data
and the time to complete the computations. In measuring the I/O
performance, we will report the I/O throughput instead of the more
common read or write speed. There is no synchronization among
the processes, therefore, the I/O operations on each process are not
coordinated. In this case, we measure the average I/O performance
on each process separately and report the sum of the I/O perfor-
mance as the aggregate I/O throughput.

4.3 Strong Scaling

The strong scaling refers to the ability of an algorithm to take ad-
vantage of more computing resources to complete the same task. In
our case, we keep the input data size fixed at 1TB and increasing
the number of processes from 100, 200, 500, 1,000, 2,000, 5,000
to 10,000 MPI processes. This data set has 10,000 days of global
climate modeling data; therefore we test scaling upto 10,000 pro-
cesses.

4http://aws.amazon.com/mturk/.
5Web URL is http://www.ssmi.com/



4.4 Hardware Platform

We conducted our experiments on the NERSC Cray XE6 super-
computing system Hopper 6. The system has ≈6,400 compute
nodes, with 24 cores (total ≈150,000 cores, 2 twelve-core AMD
’MagnyCours’ 2.1 GHz processors per node) and 32GB memory
per node. We used all 24 cores of a node for our tests and have one
MPI process on each core. Hopper uses Lustre as its file system,
with a peak theoretical I/O bandwidth of 35GB/s. The parallel file
system is configured with 156 Object Storage Targets (OSTs).

4.5 Data

4.5.1 Observational Data

We use a geophysical dataset derived from observations collected
by the AMSR-E satellite. The overall dataset contains sea surface
temperature, surface wind speed, atmospheric water vapor, cloud
liquid water, and rainfall rate. The orbital data of the satellite is
mapped to 0.25◦ mesh, i.e. each of the data observations is gridded
onto a 1440 x 720 matrix. The daily data collected by AMSR-E
contains gaps because the satellite can not cover the whole globe
in a day. To obtain complete data for any given day, RSS provides
time-averaged data using a 3-day moving window.

In our atmospheric river detection scheme, we use the verti-
cally integrated water vapor data from files containing 3-day av-
erages of column integrated water vapor. The files are compressed
into gzipped format (.gz). We converted this compressed files into
netCDF format. The size of each 3-day average file in netCDF for-
mat is 40 MB. In our tests, we used observation data for 3100 days,
which amount to 124 GB. This dataset is used for verifying the ac-
curacy of our tool in detecting atmospheric rivers in the coastal ar-
eas of California, Oregon, and Washington states. We compare the
results with the manually identified list of AR events by Dettinger
et al [2].

4.5.2 Model Data

We use climate data generated by the finite volume version of
the Community Atmospheric Model (fvCAM) in our scalability
study [19]. The fvCAM uses a finite volume approximation to the
atmospheric equations of motion and have been specifically opti-
mized for parallel execution. Output data in netCDF format in-
cludes multiple variables such as pressure, humidity, temperature,
total vertically integrated water vapor. For detecting atmospheric
rivers, we use the data value for the integrated water vapor. The
data is arranged in a 361 x 576 mesh, which represents 0.5◦ lati-
tude by 0.625◦ longitude. There are 4 simulated time steps per one
day, i.e. one per every 6 hours, and the total dataset contains 15 sim-
ulated years worth of data that amounts nearly 450 GB. The dataset
is stored into 1095 files and each file consists of 5 days worth of
data.

To avoid dealing with intra-day variations, our detection algo-
rithm works with daily averages calculate from the 6-hour timesteps
within the day. Since model data does not have any missing data,
we did not need to compute the average for 3 days as in the obser-
vational data. In our strong scaling tests, we used data related to
10,000 days, which is ≈1 TB. In the weak scaling experiments, the
data size is increased in proportion with the number of processes
used. In these, each MPI process analyzes data related to one day.
For example, in a 10,000 process MPI job, the application processes
10,000 days worth of data, which is in the range of 1 TB. Similar
to the observational data analysis, in both weak scaling and strong
scaling studies, we analyzed data related coastal areas of California,
Oregon, and Washington states. The tool can be used for detecting
AR in any region, by changing the longitude and latitude bounding
box parameters and the AR detection criteria.

6http://www.nersc.gov/nusers/systems/hopper2/

Figure 5: Yearly statistics of Atmospheric river events from observa-
tional data from http://www.remss.com/amsre/.

Figure 6: Weak Scaling times.

5 RESULTS

We outlined three questions to address in our performance study. In
this section, we report our findings on each separately.

5.1 Classifier Performance

We applied our AR detection tool to the observational data, and
compare the detected events with the published paper by Dettinger
et al [2]. We use the same thresholds listed in their paper: wa-
ter vapor (>20mm), length (>2000km) and width (<1000km), and
spatial constraints of examining ARs originating in the tropics and
making landfall on the western US coast. Figure 4 shows a sam-
pling of detections from our program.

Our tool is able to detect 81% of the AR events reported in Det-
tinger, et al. Upon further examination, we discovered that Det-
tinger, et al. were reporting ARs even if the river did not actually
make landfall (but was close to it). Our algorithm declares an AR
only if the river touches the land. We thereafter removed entries
from Dettinger, et al.’s list that did not make landfall. The result-
ing accuracy of our tool is 92%. The remaining undetected events
have vapor below threshold in some parts of the narrow band, which
CCL algorithm counts as different connected components. Since
these disconnected labels do not fit in the source, destination, and
length criteria, they are not detected as AR by the tool. We will
address this issue in future refinements of our implementation.

Figure 5 shows statistics of AR events between 2002 and 2010.
For year 2002, the data is available from June to December, and for
all other years, the events are for the whole year. We counted con-
secutive days with an AR as one event. We separate the AR events
in the winter-time from summer months. This relative distribution
is quite similar to those reported in earlier studies [2, 10].



Figure 4: Some typical atmospheric river events detected by our new method from the observational dataset. Shown is total column integrated
precipitable water in mm. Note that the structure of each event is unique. Also note that data irregularities in the satellite measurements (seen
as abrupt discontinuities e.g. in the 2007-12-04 event) do not have an adverse effect on the detection procedure.

Figure 7: I/O performance for weak scaling.

5.2 Weak Scaling
Figure 6 shows results from our weak scaling experiment. The
x-axis shows number of MPI processes, and the y-axis shows the
time in seconds (in logarithmic scale). To recall the experimental
setup, each process analyzes data for a single day; as more pro-
cesses as added, the detection algorithm works on a proportionally
larger number of days.

We observe that the majority of the execution time of our tool is
dominated by I/O ( 98%). Since each process only works on one
day’s worth of data, we expect the the I/O time and the computa-
tion time to remain constant as the number of processes increases.
While these costs stayed relatively constant, we noticed a small
increase in the observed time. We attribute this to a small frac-
tion of MPI processes taking longer than others to finish their pro-
cessing. As the number of processes increase from 1000 to 10000

processes, the observed computation time fluctuates between 0.7ms
and 1.1ms, we believe that these fluctuations are random in nature
(and not systematic).

The I/O time also increases slightly; the main reason for this
increase is due to shared access to the same input file for reading
filenames. As the number of processes increase, the time to read
the file names increase from 0.29s for 1000 processes to 1.54s for
10,000 processes. In the same tests, the time to read the integrated
water vapor data remains about the same, 1.01s 1000 processes and
1.32s for 10,000 processes.

In Figure 7, we show the aggregate I/O throughput against the
number of processes. While the previous figure (Figure 6) shows
I/O time for the process that took the longest time, this figure shows
aggregate I/O bandwidth of all processes. We calculated the aggre-
gate I/O throughput as the sum of I/O throughput at each process.
Since each process runs independently without any synchroniza-
tion, measuring global I/O bandwidth for the application does not
reflect I/O performance of the tool. As the number of processes
increases, the I/O throughput also increases. In the model dataset
each file contains five days of data and is therefore shared by five
processes. Since each read request fetches a full stripe of data (1
MB in Lustre file system configured on Hopper), this 1 MB stripe
of data includes all water vapor data for all five days. This explains
achieving good I/O performance even though each process is ex-
pected to read only about 128 KB of data.

Another reason for the increased I/O throughput is because as
more processes are making I/O requests to the file system, they col-
lectively occupy more attention of the file system. Therefore, the
observed throughput is a larger fraction of the file system’s peak
performance. In our tests, we see the aggregate I/O throughput in-
crease from 2.5 GB/s with 1000 processes to about 4.6 GB/s with
10,000 processes.



Figure 8: Strong Scaling times.

Figure 9: I/O performance for strong scaling.

5.3 Strong Scaling
Figure 8 shows strong scaling results with a fixed data size related
to 10,000 days. This experiment shows how the application scales
as the number of processes increase, while the data size is fixed.
The two bars show the I/O time and the computation time. The
sum of these two costs is equal to the total execution time of the
algorithm. The upper trend line (dashed) refers to the I/O time if
ideal speedup were achieved and the lower trend line represents
computation time if ideal speedup were achieved. We calculated
the time with ideal speedup in reference to the measured time when
100 processes were used. For instance, if the I/O overhead with
100 processes is t, then the I/O overhead with 200 processes is t/2
and that with 500 processes is t/5, and so on. The combination of
reading file names from input file and the reading vapor data from
climate data set dominate the overall execution time. The total I/O
time constitutes 99% of the execution time.

In Figure 8, we see that the computation time speedup generally
agrees with ideal scaling. This suggests that the computations are
relatively load-balanced and amenable to parallelization. In this
case, each process handles data from a number of different days,
which minimizes the effect of random fluctuations discussed earlier.

The I/O times are very close to ideal speedup for the test cases
with 100, 200 and 500 processes. As indicated before, five pro-
cesses read from a single data file and their read operations are most
likely served by a single disk read, which means that 100 OSTs can
serve 500 processes. In going from 100 to 500 processes, our pro-
gram is effectively using more OSTs from the file system, therefore
the I/O time scales well. As more processes are used, it is no longer
possible to have each OST serve five processes. This creates I/O
contention and increases the time needed to complete the I/O oper-
ations. We see that the I/O time in Figure 8 goes above the expected
value for ideal speedup when more than 1000 processes are used.

In Figure 9, we show the aggregate I/O throughput as the number
of processes increases with fixed data size. The I/O throughput
increases as the number of processes increase up to 500 processes

following the linear trend. From the 1000 processes case, the I/O
throughput falls short of ideal growth. Nevertheless, the aggregate
throughput still increases, reaching 4.6 GB/s with 10,000 processes.

Our results indicate that our tool is quite well suited for weak
scaling. Our tool can analyze more data with a larger number of
processes. This will be useful in processing output data from cen-
tury scale climate model integrations.

6 FUTURE WORK

While our current implementation has produced very promising re-
sults, there are number of issues that we would like to address in
future work. As indicated earlier, I/O accounts for the majority of
processing time in our tool, we would like to undertake a more care-
ful study of I/O optimization strategies and incorporate them into
our tool. This includes avoiding the use of a single shared file-list,
and more optimal strategies for multi-core read operations.

In terms of correctness, we have treated the manual results from
Dettinger, et al. as ground truth. First, we would like to more
closely examine results which are flagged as ARs by their approach,
and missed by our implementation. We envision using more so-
phisticated image processing techniques (e.g. Bilateral Filtering) or
topological techniques, which will make our technique more robust
to choices of thresholds. We would also like to verify the detection
results from our tool on climate modeling output. It is quite pos-
sible that we will need to automatically adjust threshold values for
integrated water vapor for simulation output. Not all climate mod-
els produce integrated water vapor as part of their output, and we
need to explore a generic way of computing integrated water vapor
in model data.

7 CONCLUSIONS

Atmospheric rivers are a type of rare weather event capable of trans-
porting large amounts of water from tropical region to elsewhere.
They are a important source of fresh water as well as a cause of
severe flooding and wind damage. In this work, we have devel-
oped an efficient detection tool for automatically detecting ARs.
We use a combination of thresholding, connected component label-
ing and verification steps to check for the presence of ARs. Our
implementation was able to successfully detect 92% of ARs that
make landfall; the results were verified against a manually curated
results published by Dettinger, et al. We demonstrated good weak
and strong scaling for our implementation. We applied our tool to
a large 1TB dataset on 10,000 cores, and completed the process-
ing in 3 seconds. We believe that our fully automated and highly
parallelizable tool will enable climate scientists to effectively tackle
large data challenges from next generation climate simulation out-
put.
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